Malware Analysis for Incident Responders

Agustin Gonzalez

whoami

- Agustin Gonzalez CISSP
- Puerto Rico
- Cyber Defense Engineer, U.S Air Force
- 8 years of cyber security experience
 - o Security Analyst
 - o Incident Responder
 - o Malware Analyst
 - o Red Team
 - o Purple Team
- Master's Degree in CybersecurityCertified in GIAC GREM, GCFA, GCIH and GPEN
- Love Tinkering with Computers

https://www.linkedin.com/in/agustin227/ https://twitter.com/agu227

Overview

Scenario What is Malware Analysis? Why Malware Analysis? **Malware Analysis Thought Process Malware Analysis Lab Setup Stages of Malware Analysis Key Takeaways** Resources

Scenario

- Suspicious program (executable) is found
- We don't know what it is or how it got there or what is doing
- What do we do?
 - o Do we just delete it and be done with it?
 - o How do we know the impact of that piece of software?
- OSINT seems to not have the answers
- We need IOCs

Now What?

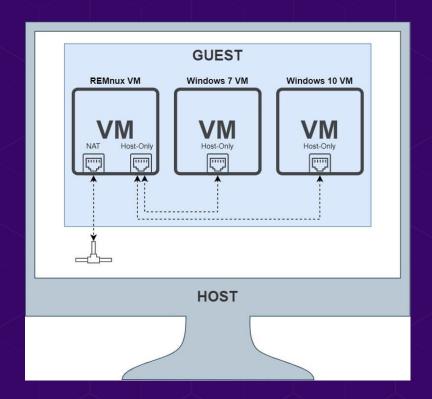
Malware Analysis is the Answer!

What is Malware Analysis?

- Malware analysis is the process of studying malicious software (malware) to understand its functionality, origin, and potential impact. It is a critical part of cybersecurity, as it helps security teams to identify and mitigate threats before they can cause damage. (By Bard)
- Allows to Identify the type of malware

Why Malware Analysis?

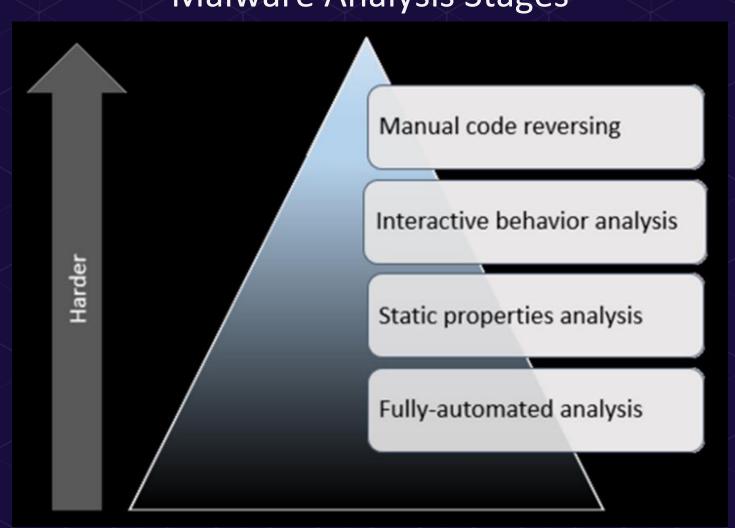
- Malicious software is an integral component of most security incidents
- Most people don't understand what the malicious software does
- Understanding how to analyze malware enables you and your organization take control of incidents
 - Determine scope of incident
 - Understand the threat to your organization
 - What are the software capabilities?
 - Completely eradicate malicious artifacts across the enterprise (Threat Hunting?)
 - Fortify system and network defenses thanks to the discovery of IOCs and creation of signatures
- Contribute to the cyber intelligence community
 - What does the software reveal about the creator (adversary)


Malware Analysis Resources

- Use online resources like:
 - o File Reputation-Virustotal, #totalhash, Malware Hash Registry
 - Datasets Winbindex
 - Automated Malware Analysis Platforms any.run, Hybyd Analysis, Joe Sandbox, Falcon Sandbox
 - o URL/IPvoid Research vURL, Quttera, urlscan.io, urlvoid, Talos
 - Cyber Intelligence Shodan.IO, OTX, RiskIQ, Talos, CISA, US-CERT, Mandiant.
- Warning Use caution when utilizing external resources due to:
 - Attribution
 - Alert the adversary

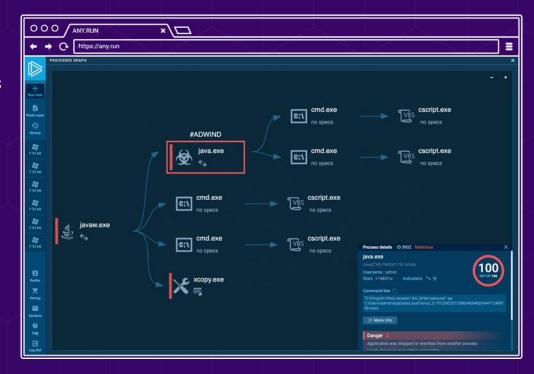
Malware Analysis Lab

- Isolate Lab from other networks
- Virtual Lab (VMs)
 - Convenient
 - o Multiple hosts on one system
 - o Internal Networking
 - Snapshots
 - VM Escape Exploits (Rare)
 - VM-Aware Malware
- Physical Systems are an option but outside the scope in here



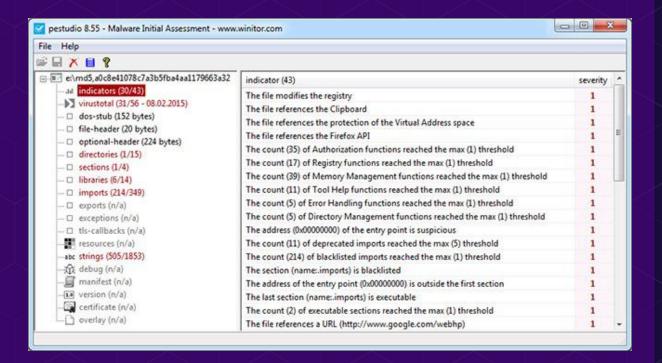
Malware Analysis Lab

- Lab should include these capes:
 - Static properties analysis tools
 - o Behavioral analysis tools
 - Code Analysis Tools
- Distros
 - o REMnux Linux Based Malware Analysis Distro
 - Flare VM Script that automates the installation of malware analysis and RE on a Windows VM.


Malware Analysis Stages

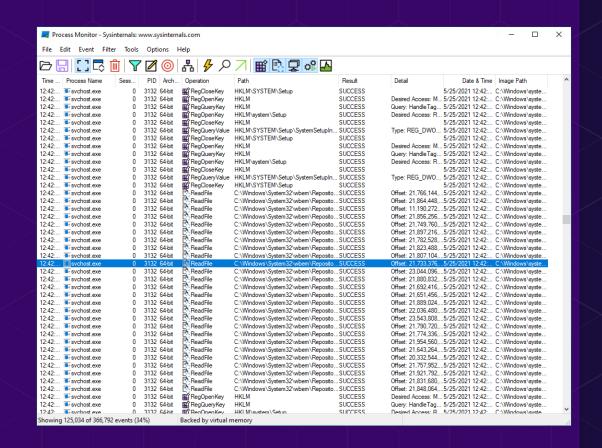
Fully Automated Analysis

- Ouick assessment
- Produces easy to understand reports
- Not as flexible as manual analysis
- Some malware will evade or refuse to run on automated platforms
- Examples
 - Cuckoo Sandbox
 - Joe Sandbox
 - Any.run
 - Hybrid analysis
 - Falcon Sandbox
 - Mockingbird

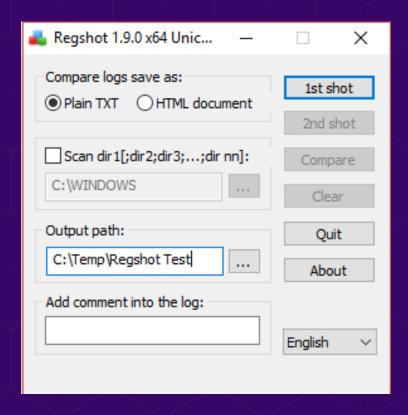

Static Properties Analysis

- Also know as metadata analysis
- Initial triage of a artifact
- Analyze strings, header and overall structure of the artifact
- Does not involve executing the malware
- Capabilities include extracting indicators such as:
 - Hashes, IP addresses and Domains
 - Imports and Exports (DLLs)
 - File Headers
 - o Checking if malware is obfuscated or packed
 - o API Calls Provide functions
 - Entropy
 - ImpHash

1. !This program cannot be run in DOS mode. 23. o/o/ 2. Rich 24. advapi32 25, ntdll 3. .text 4. '.data 26. user32 27. 1+KY ExitProcess 6. kernel32.dll 28. #%li 29. }>*K 7. ws2 32 8. cks=u 30. QQVP 9. ttp= 31. advpack 10. cks= 32. StubPath 11. CONNECT %s:%i HTTP/1.0 33. SOFTWARE\Classes\http\shell\open\commandV 12. QSRW 34. Software\Microsoft\Active Setup\Installed Components\ 35. test 13. ?503 36. www.practicalmalwareanalysis.com 200 15. thj@h 37. admin 6. VSWRQ 38. VideoDriver 17. YZ [A 39. WinVMX32-18.5 40. vmx32to64.exe 19. YZ_[^ 41. SOFTWARE\Microsoft\Windows\CurrentVersion\Run 20. QVIM 42. SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders 21. 6l*h<8 43. AppData 22. ^-m-m<|<|<|M 44. V%X

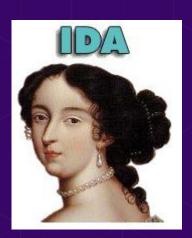

Static Properties Analysis

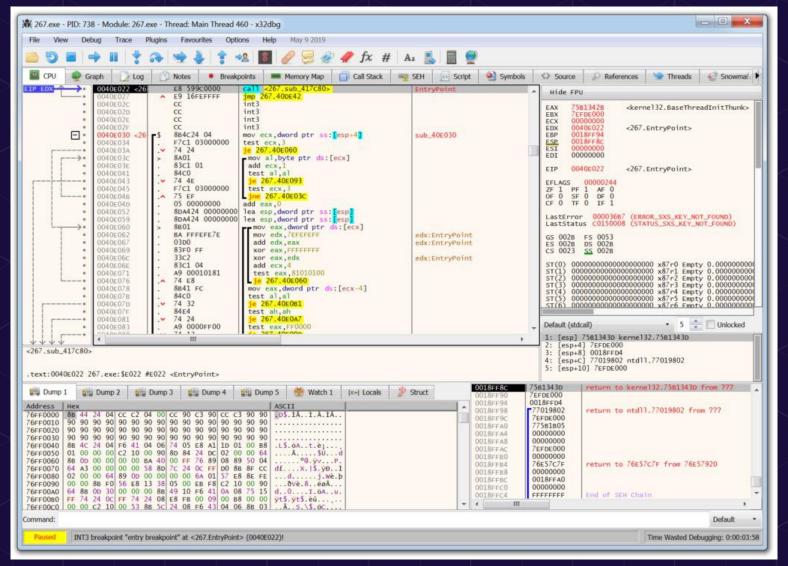
- Obtain IOCs
 - Compare with OSINT
 - Create Signatures
- Not very useful for packed/obfuscated malware
- Tools
 - o PEStudio, PEFrame
 - Strings (Floss, String Sifter, Bintext, Strings)
 - Detect it Easy (DIE), EXEinfo
 - CFF Explorer
 - o Capa
 - Bulk Extractor
 - Manalyze
 - Cybershef
 - Hxd


Interactive Behavioral Analysis

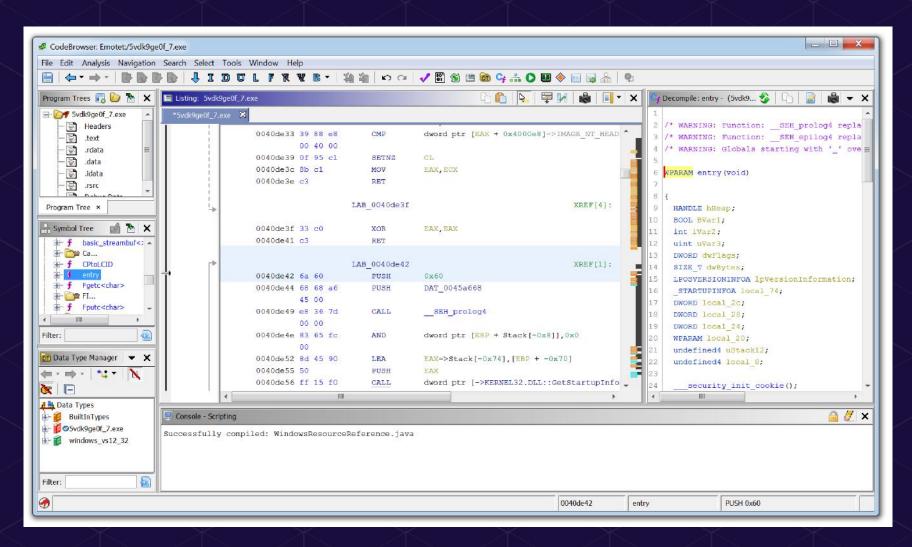
- Also known as dynamic analysis
- Execute and analyze the malware as it runs on the system
 - o Complete visibility on the malware actions
 - Registry actions
 - Read/write actions on disk
 - Network connections
 - Persistence mechanisms
 - Mutexes
 - Process modification (injects, threads)
- Some malware will fail to run due to defense mechanisms
 - o Fail to run on virtualized systems
 - o Difference actions if it detects analysis tools or VM
 - o Self-Deletion
- Very useful to analyze packed malware
- Can produce extra artifacts for analysis

Interactive Behavioral Analysis


- Can adapt to malware needs open inner stages of execution
- Not perfect
- Tools
 - o Process Hacker or Process Explorer
 - ProcMon
 - Regshot
 - o Procdot
 - Wireshark
 - Fakenet
 - FakeDNS
 - Fiddler
 - Cmd watcher
 - CaptureBat


Manual Code Reversing

- Also known as Code Analysis
- Hardest way to analyze malware
- Binary Patching
- Nothing can hide
- Debuggers
 - Allow for static and dynamic code analysis
 - Step by step execution (process stepping)
 - o Tools
 - WinDBG, x64dbg, Radare2, X64dbg
- Disassemblers
 - Translates machine level instructions to assembly code and sometimes to high level code
 - o Tools
 - Ghidra
 - Ida



X64dbg

Ghidra

Key Takeaways

- Malware analysis can provide guidance and perspective
- Some malware samples will require tweaking and inputs
- You don't have to do all the stages of malware analysis
- Like programming, practice is the key to success
- Must do!!to understand how to perform defense better
- Code analysis is not meant for Incident Responders to accomplish.

Resources

- Malware Repositories
 - Malshare
 - o theZoo
 - Malware Traffic Analysis
 - Virusshare
- Courses
 - o Malware Unicorn
 - PMA (TCM Academy)
 - FOR610 (SANS)
 - Malware Noob2Ninja
- Books
 - o Practical Malware Analysis
 - o IDA Pro Book
 - o Malware Data Science
 - o Practical Binary Analysis
- CTFs
 - Flare CTF
 - Zombie Land CTF
- Github
 - https://github.com/rshipp/awesome-malwareanalysis

Summary

Scenario What is Malware Analysis? Why Malware Analysis? Malware Analysis Thought Process Malware Analysis Lab Setup Stages of Malware Analysis Key Takeaways Resources

Questions

Thank you!!

Slides - https://tinyurl.com/peakcybermalware https://www.linkedin.com/in/agustin227/ https://twitter.com/agu227