Securely Operating Through Commercial Infrastructure

FutureG & 5G Operate Through

Dr. Dan Massey Director, Operate Through OUSD (R&E) FutureG & 5G Operate Through

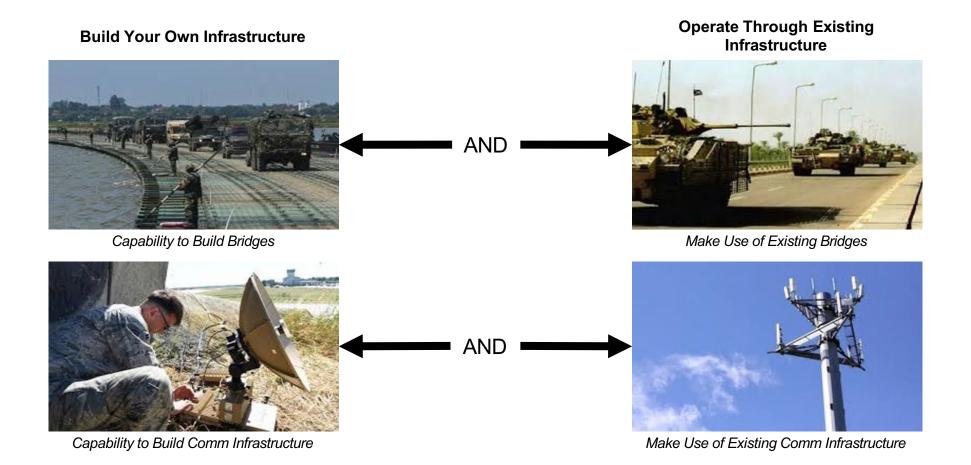
Distribution Statement A: Approved for Public Release, Distribution Unlimited September 2023

SG MEC SG RAN SG Core Scure Network Slice?

- **5G Radio Access Network (RAN):** 5G is really all about the physical layer transmission of signals. Beam forming, MIMO, 5G NR, and so forth dramatically improve how signals are transmitted and received.
- **5G Core:** 5G is really all about the core network that takes over once a signal has been received. By enabling and encouraging network function virtualization, 5G dramatically improves how the (often wired) network is constructed and managed.
- 5G Multi-access Edge Computing (MEC): 5G is really all about pushing computational resources to the edge. By bringing the power of the cloud close the edge, features such as augmented reality/virtual reality benefit from reduced latency and dispersed computations.

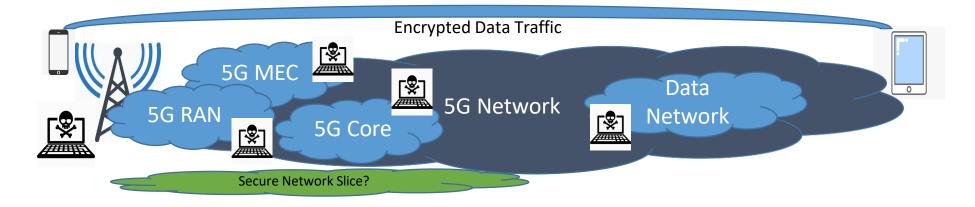
What's Driving Critical Infrastructure To 5G?

- Spectrum is a Finite (and Valuable!) Shared Resource
 - > Any type of wireless transmission uses spectrum.
 - > Critical infrastructure competes with rapidly growing users of spectrum.
 - ➢ In general, conflicting use of spectrum results in no useful communication.
- Massive Investments in 5G Technology
 - > From IHS Markit 2020 5G Economy Study, commissioned by Qualcomm Technologies, Inc:
 - Collective investment in R&D and CAPEX by firms that are part of the 5G value chain, within the seven countries examined in the report, will average over \$260 billion annually.
 - The United States and China are expected to lead in 5G CAPEX and R&D, investing a total of \$1.3 trillion and \$1.7 trillion respectively, over the 15-year time horizon of this study.


• 5G Enabling Technologies

- From "Key Enabling Technologies of 5G Wireless Mobile Communication" by Sudhir Sharma1, M Deivakani2, K Srinivasa Reddy3, A K Gnanasekar4 and G Aparna:
 - 5G (fifth generation) is more reliable at a very low cost and provides 10 times more capacity than other generations.
 - Key enabling technologies used in 5G networks include Device-to-device (D2D) communication, Machine-to-machine (M2M) communication, Millimetre Wave, Quality of Service (QoS), Network Function Virtualization (NFV), Vehicle-to-everything (V2X), Full-Duplex and Green Communication. Distribution Statement A: Approved for Public Release, Distribution Unlimited May 2023

Headlines: Verizon Wireless Buys Spectrum for \$3.6 Billion AT&T buys spectrum owner for \$1.6 billion



Operate Through Existing Infrastructure

Distribution Statement A: Approved for Public Release, Distribution Unlimited May 2023

- **Commercial 5G Networks Lack DoD Suitable Security Assurances:** Commercial 5G adds coverage, Quality of Service, and low cost, but may lack security assurances suitable for DoD missions.
- **Risks From Untrusted Supply Chain Components:** Risks arise from untrusted 5G manufacturers and/or compromised 5G components.
- Unable to Leverage Indigenous 5G Network Capabilities: Operating through indigenous 5G networks would benefit DoD missions if security requirements are met.

Security and Resilience: CIA and O

- Classic Confidentiality, Integrity, and Availability:
 - ➤ Confidentiality encryption, access control, etc..
 - > Integrity authentication, message integrity, replay attacks, etc..
 - > Availability denial of service defense, jamming/EW.
- Observability:
 - Capability to hide in plain sight.
 - Situational awareness and traffic analysis defense.
 - Capability to identify and analyze adversary actions.

Zero Trust & Operate Through

Perimeter defense techniques are ineffective for Operate Through

- > Perimeter defense aims to keep adversary out of the secure system (castle and moat).
- > Lack a well-defined perimeter when operating through commercial 5G network.
- Underlying network may contain untrusted components.

Zero Trust Introduces Key Principles Including

- Continuous authentication and access control.
- > Push security (e.g. encryption, access control) close to the end systems.
- Segmentation (micro-perimeters).
- > Threat intelligence to drive real-time detection of malfunction or malicious action.
- Zero Trust Can Enhance Availability
 - Extend zero trust concept to paths as well as devices.
 - Multi-path routing and dynamic spectrum usage.

Zero Trust Architecture Promising For Operate Through

Distribution Statement A: Approved for Public Release, Distribution Unlimited May 2023

Operate Through Assumptions

- Critical Infrastructure Will Move to Commercial 5G
 - >Includes some (not all) military communication systems.
- Commercial Market Drives 5G Standards and Implementations
 - Critical infrastructure can (and should) engage in standard discussion.
 - > Critical infrastructure alone insufficient to drive standards and/or implementations.
- Wide Variety of Security Practices
 - ≻ Many security aspects of 5G (3GPP) standards are optional.
 - ≻ Operational practices will vary widely.
 - >Networks will contain untrusted (and in some cases malicious) equipment.
- No Canonical 5G Network
 - \succ Mix of 5G SA and NSA.

Operate Through Environments

- "Black Box" 5G Network Treated as an unreliable bit pipe
 - > Deploy security at end devices & connect networks via untrusted bit pipe.
 - > Applicable to scenarios where DoD leverages indigenous infrastructure as a user.
- Cooperative Commercial/Private 5G Provider will work with DoD on security
 - ➤ Work with provider to augment some combination of RAN/MEC/CORE.
 - > Work within the commercial environment to the benefit of commercial provider.
 - > Applicable to scenarios where DoD works with indigenous infrastructure as a partner.

Security Enhancements for a Tailored Environment

- Full control over code and components.
- ➢ Introduce changes to the RAN/MEC/CORE without commercial 5G constraints.
- Applicable to future scenarios where DoD has developed its own 5G capabilities.

	U.S	Allied	Grey/Unknown	Contested
	Black box 5G Environment			
	Cooperative 5G Environment Tailored 5G Environment			
	Distribution Sta	tement A: Approved for	r Public Release, Distributi	on Unlimited May 2023

Questions?

Dr. Dan Massey Director, Operate Through OUSD (R&E) FutureG & 5G Operate Through

Distribution Statement A: Approved for Public Release, Distribution Unlimited May 2023

Longmont, CO

23 May 2023

Backup Slides

Dr. Dan Massey Director, Operate Through OUSD (R&E) FutureG & 5G Operate Through NUTLINSE FOR RESERVER

Distribution Statement A: Approved for Public Release, Distribution Unlimited May 2023

Longmont, CO

23 May 2023

CI Operating Through Commercial Infrastructure

Energy Sector

- Control systems moving online for sensing and automated control, improved efficiency, added resilience to failures, new generation capabilities (microgrids), and support for new loads on the network (fast charging).
- SG Project: funding the National Renewable Energy Lab to evaluate feasibility of replacing fixed wired connectivity with low latency 5G networks.

Transportation Sector

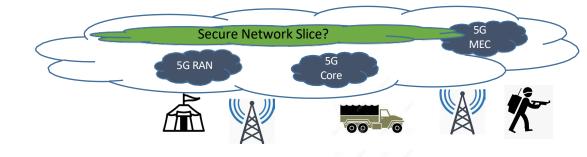
- > Vehicle to Everything (V2X) moving from bespoke system to 5G based commercial infrastructure.
- > 5G Project: funding DoT Volpe Center to assess commercial vehicle V2X development.
- Dams Sector
 - Monitoring systems moving online to identify issues and vulnerabilities, mitigate threats, and rapidly adapt in the event of natural (or man made) disasters.
 - SG Project: funding U.S. Corp of Engineers to develop monitoring and mitigation system that operates over commercial wireless networks.

Could/should the military operate on commercial networks? Distribution Statement A: Approved for Public Release, Distribution Unlimited May 2023

ENISA Threat Framework

- Evaluate Security Efficacy Across Four Categories:
 - > Confidentiality, Integrity, Availability, and Observability.
- ENISA (European Union Agency for Cybersecurity) Framework Defines Threats and Categories They May Impact.

Threats	Potential Impact On	
Manipulation of network configuration / data forging	Integrity, Availability, Observability,	
Exploitation of software, hardware vulnerabilities	Confidentiality, Integrity, Availability, Observability,	
Denial of service (DoS)	Availability	
Malicious code/software	Confidentiality, Integrity, Availability, Observability,	
Abuse of remote access to the network	Integrity, Observability,	
Abuse of information leakage	Confidentiality, Integrity, Observability,	
Abuse of authentication	Confidentiality, Integrity, Availability, Observability	


Distribution Statement A: Approved for Public Release, Distribution Unlimited May 2023

•

Secure Network Slicing

- Overall Objectives:
 - > Increase security, preserve performance.
 - Possible Solutions:
 - Request network slice from 5G network.
 - > Network slice provides specialized service on top of existing 5G network.
 - \succ Networking slicing anticipated to be a standard service in 5G.
 - > Network slicing typically used for performance metrics:
 - Provide higher bandwidth to devices using the slice.
 - Provide low latency to devices using the slice.
- Secure Network Slicing Questions:
 - Can a slice provide added security instead of performance?

Example Lessons Learned (?) On Separation

- (Lack of) Wisdom In Putting Both Infotainment system and Vehicle Control on Same Network Segment?
 - > Cybersecurity 101: Separation of Duties, Isolation, and Segmentation.
 - Vehicle networks evolved over time.
 - Frequently see references to vehicle network limitations.
- (Lack of) Wisdom in Putting Infotainment and Vehicular Control on Same 5G Network?
 - Rely on the same 5G network for passengers streaming videos and V2V or V2I signaling?
 - > Network will evolve over time.
 - Cost and efficiency of building out a separate network?